
March 2013 FoxRockX Page 1

Make Thor Your Own
It’s easy to add your own tools to Thor and to take advantage of Thor’s built-in
capabilities.

Tamar E. Granor, Ph.D.

 In my last two articles, I wrote about some of the
tools that come with the VFPX project, Thor. This
month, I show you how to add existing tools to
Thor, and how to take advantage of the code that‘s
included with Thor.
Thor comes with an incredible collection of tools
that make developing software with VFP easier. If
that were all it offered, it would be worth installing.

However, Thor is also a container for any tools
you want to add. I have a number of small tools I’ve
written at one time or another, mostly with no user
 interface. For example, one of them goes through a
project and fi lls a cursor with the names of all the form
classes used in that project (that is, those on which at
least one form is based). The whole thing is about 40
lines of code. The problem with these little tools is that
when I want to use them, I have to fi nd them and look
at the code to remember how. Then I have to either
make sure the code is in the path or specify the full
path in order to run the tool.

One of the design criteria for Thor was to make
it easy for people to add tools and to share them.
That way, you can take all the little tools like the
one I describe above and stick them into the Thor
Tools menu to keep them handy. Among other ben-
efi ts, Thor manages the code so you don’t have to
worry about paths.

To add a tool to Thor, open the Thor confi gu-
ration form (Thor | Confi gure from the menu)
and click the Tool Defi nitions tab. Click the Create
Tool button to open the Create Tool dialog, shown
in Figure 1. Once you give the tool a name using
the textbox preceded by "Thor_Tool_," click the
Create button to open a template fi le for the tool.
(The string "Thor_Tool" becomes part of the tool’s
name.)

Thor tools require a specifi c format, which is
provided by the template. The default template
is shown in Listing 1, reformatted to fi t the page.
The bulk of the template provides a place to give
Thor information about this tool; to create a tool,
fi ll in one or more of the properties listed. Prompt is
 required and contains the prompt that will appear
on the Thor Tools menu. Description appears only
in the Thor confi guration dialog and Tool Launch-
er. When you search in Tool Launcher, both the
prompt and the description are searched.

L isting 1. The default Thor template shows exactly what’s
required to create a Thor tool.
Lparameters lxParam1

**
**
* Standard prefi x for all tools for Thor,
* allowing this tool to
* tell Thor about itself.

If Pcount() = 1 ;
 And 'O' = Vartype (lxParam1) ;
 And 'thorinfo' == Lower (lxParam1.Class)

 With lxParam1

 * Required
 .Prompt = 'Prompt for the tool'
 && used in menus

 * Optional
 Text to .Description NoShow
Enter a description for the tool here
 EndText
 .StatusBarText = ''
 .CanRunAtStartUp = .T.

 * These are used to group and sort tools
 * when they are displayed in menus or the
 * Thor form
 .Source = ''
 && where did this tool come from? Your
 && own initials, for instance
 .Category = ''
 && creates categorization of tools;
 && defaults to .Source if empty

F igure 1. To add a new tool to Thor, specify the name of the tool in this
dialog and click Create.

Page 2 FoxRockX March 2013

 * These are used to group and sort tools
 * when they are displayed in menus
 * or the Thor form
 .Source = ''
 .Category = 'TEG'
 .Sort = 0

The heart of the tool is the ToolCode proce-
dure; that’s where you put the code to perform the
task. Listing 3 shows the code added to ToolCode
for the Get Form Classes tool. As you can see, it’s
not terribly complex. It checks for an active project,
and if one is found, a cursor is created to hold the
list of form classes. The code then loops through the
files in the project. When a form file is encountered,
it’s opened as a table, and the form-level record
found. If we’ve seen this form class before, it just
counts this instance. If this is a new form class for
our list, a record is added to the FormClasses cur-
sor. After the loop is complete, the cursor opens in
a BROWSE window.

Listing 3. The ToolCode procedure for the Get Form Classes
tool.
LOCAL cClassName, oFile, oProject, nOldSelect

IF TYPE("_VFP.ActiveProject") = "U"
 MESSAGEBOX("No active project", 0+48, ;
 "Get form classes")
 RETURN
ENDIF

oProject = _VFP.ActiveProject

nOldSelect = SELECT()

IF USED("FormClasses")
 USE IN SELECT("FormClasses")
ENDIF

CREATE CURSOR FormClasses ;
 (cClass C(30), nCount N(3))
INDEX on UPPER(cClass) TAG cClass

SELECT 0
FOR EACH oFile IN oProject.Files
 IF oFile.Type = "K"
 TRY
 USE (oFile.Name) ALIAS __Form
 LOCATE FOR UPPER(BaseClass) = "FORM"
 cClassName = __Form.Class
 IF SEEK(UPPER(m.cClassName), ;
 "FormClasses", "cClass")
 REPLACE nCount WITH nCount + 1 ;
 IN FormClasses
 ELSE
 INSERT INTO FormClasses ;
 VALUES (m.cClassName, 1)
 ENDIF
 USE IN DBF("__Form")
 CATCH
 ENDTRY

 ENDIF
ENDFOR

* Make sure last form was closed.
USE IN SELECT("__FORM")

SELECT FormClasses
BROWSE NOWAIT

 .Sort = 0 && the sort order for all
 && items from the same Category

 * For public tools, such as PEM Editor,
 * etc.
 .Version = ''
 && e.g., 'Version 7, May 18, 2011'
 .Author = ''
 .Link = ''
 && link to a page for this tool
 .VideoLink = ''
 && link to a video for this tool

 Endwith

 Return lxParam1
Endif

If Pcount() = 0
 Do ToolCode
Else
 Do ToolCode With lxParam1
Endif

Return

**
**
* Normal processing for this tool begins here.
Procedure ToolCode
 Lparameters lxParam1

EndProc

The Category and Sort properties let you spec-
ify where the tool appears in the list of Thor tools.
That list appears in the Thor Tools menu, in the
Configuration form and in the Launcher. If Catego-
ry is specified, the tool appears in that group; you
can specify multiple levels in the menu by separat-
ing the items with the vertical bar (“|”). For exam-
ple, to add an item to the Misc. group in the Code
menu, specify “Code|Misc.”

You might use your initials or your company
name to group all of your own tools together.

The Source property, which can also be used
for this purpose, is deprecated, so just leave that
property empty.

The Sort property determines the position of
this item in the specified submenu.

The last set of properties in the template is
relevant only for tools being shared with the VFP
community.

Listing 2 shows the properties set for my tool
that gets a list of form classes used in a project. (The
trailing comments for the properties have been re-
moved to save space.)

Listing 2. The Thor properties set for the Get form classes tool.
 * Required
 .Prompt = 'Get form classes'

 * Optional
 Text to .Description NoShow
Fill a cursor with names of the form classes
used in a project.
 EndText
 .StatusBarText = ''

March 2013 FoxRockX Page 3

Once you’ve specifi ed the necessary proper-
ties and added code to the ToolCode procedure,
save the program. It automatically gets saved in the
right place with the right name.

To test your tool, either close the Thor confi gura-
tion form, or click its Thor button. Either one refresh-
es menus and hotkeys. Once you do so, the new tool
is included in the Thor Tools menu, as in Figure 2. In
the other Thor forms that list tools (the Confi gura-
tion form and the Launcher), your added tool shows
up with a yellow background.

The Thor Framework
While you can write a new tool with standard VFP
code (as in the Get Form Classes tool), Thor offers
a large library of capabilities that make it easier to
write tools. The Thor Framework gives you access
to several classes, as well as some standard items
you may want.

To access the Thor Framework, choose Thor |
More | Thor Framework from the menu. A win-
dow opens containing code you can cut and paste
into your tool code. Figure 3 shows part of the Thor
Framework. The Thor Framework is smart enough
to show the correct path for your installation. (So

Figure 3 shows where the fi les are located on my
computer.) This means that if you have someone
else’s code that uses the Thor framework, you need
to replace the LOCAL defi nition with the correct
version for your installation.

A complete discussion of the Thor Framework
is beyond the scope of this article, but I’ll get you
started with it and show a small example. (You’ll
fi nd an overview at http://tinyurl.com/cney2dz.
There’s more information in the chapter "Creating
Thor Tools" of "VFPX: Open Source Treasure for the
VFP Developer.")

The Thor Framework is a set of classes, either
built into Thor or built into other VFPX tools (like
PEM Editor). The window that opens when you
choose the Thor Framework gives you the code
you need to access those classes. There are four core
classes, shown in Table 1. There’s a documenta-
tion page for each class on the VFPX site. The Thor
Framework listing provides a link to the documen-
tation.

Tab le 1. The Thor Framework provides access to a set of
classes that simplify tool writing.

Class Purpose
EditorWindow Provides methods to access and

modify IDE windows and to access
and modify text in the current code
editing window.

Tools Provides methods (used by PEM
Editor) to manipulate forms and
classes.

ContextMenu Provides methods used to create
pop-up menus and sub-menus.

FormSettings Provides methods to save and
restore form properties, such as
size and position.

As Figure 3 indicates, the way to use these
classes is to instantiate them using an ExecScript()
call to the Thor dispatcher, referenced as
_Screen.cThorDispatcher. Save a reference to the
instantiated object and call its methods.

Fig ure 3. The Thor Framework lets you take advantage of code in Thor in your tools.

Fi gure 2. Once you fi nish the defi nition of a new tool and re-
fresh Thor, the tool is shown on the menu.

Page 4 FoxRockX March 2013

The same technique, calling ExecScript() pass-
ing _Screen.cThorDispatcher as the fi rst parameter,
gives you access to some other features of the Thor
Framework. Perhaps the most useful is the ability
to fi nd the path to any fi le that’s in the Thor hierar-
chy; Listing 4 demonstrates.

 Listing 4. You can use the Thor Framework to fi nd the path to
any fi le in the Thor hierarchy.
lcFileName = ExecScript(;
 _Screen.cThorDispatcher, ;
 "Full Path=" + m.cFileName)

The Get Form Classes tool described earlier
in this article works only when you have a project
open. One of the cool features of many Thor tools is
that they can see what’s at the cursor position and
operate on that item. That would be a handy capa-
bility for this tool—if there’s no open project, then
fi nd the name at the cursor position and attempt to
open that project.

To fi gure out how that capability was provid-
ed, I poked around in the code for Thor tools that
have it. To see how any Thor tool is implemented,
open the Thor Confi guration form and switch to
the Tool Defi nitions page. Select the tool you’re
interested in the treeview and click the Edit Tool
button, indicated in Figure 4. The form shown in
Figure 5 appears. If all you want to do is see how
the tool works, choose the second button, “View
this fi le in Read-Only mode.”

In the code for the SuperBrowse tool, I found
the lines in Listing 5. As you can see, it uses the
Tools class from the Thor Framework.

Li sting 5. The code that implements the SuperBrowse tool
uses this code to determine what table to browse.
* tools home page =
* http://vfpx.codeplex.com/
wikipage?title=thor%20tools%20object
loTools = Execscript (;
 _Screen.cThorDispatcher, ;
 'class= tools from pemeditor')
loTools.UseHighlightedTable (;
 Set ('Datasession'))

F igure 4. You can modify a tool by locating it in the Thor Confi guration form and clicking Edit Tool.

Fi gure 5. This form appears when you attempt to open any
built-in Thor tool. To modify the tool, choose the fi rst button. To
simply look at its code, choose the second button.

March 2013 FoxRockX Page 5

I dug into the PEM Editor’s source to find the
UseHighlightedTable method, which I found in the
PemEditor_Tools class of PEME_Tools.Vcx (which
is the implementation of the framework’s Tools
class). Eventually, I found the line of code in List-
ing 6. Since the method name implies that it only
grabs the highlighted text, I tested to confirm that
the method, in fact, picks up the entire word where
the cursor is positioned.

Listing 6. This line of code, used by the SuperBrowse tool,
reads the text under the cursor.
lcAlias = ;
This.oUtils.oIDEx.GetCurrentHighlightedText()

The next step was to change the code for my
Get Form Class tool. I opened the tool code as
 described above.

I copied the three lines from the framework
that instantiate the Tools class and pasted them into
the appropriate place in the ToolCode procedure.
Once the Tools class is instantiated, I can use it to
get the word under the cursor, and then try to open
a project with that name. The relevant portion of
the modified ToolCode procedure is shown in List-
ing 7. (Note that a couple of lines wrap here.)

Listing 7. Replace the code to check whether a project is open
with this code to allow the Get Form Classes tool to work on the
project whose name is under the cursor.
IF TYPE("_VFP.ActiveProject") = "U"
 * tools home page = http://vfpx.codeplex.
com/wikipage?title=thor%20tools%20object
 Local loTools as Pemeditor_tools of ;
 "d:\fox\vfpx\thor\thor\tools\apps\pem edi-
tor\source\peme_tools.vcx"
 loTools = ExecScript(;
 _Screen.cThorDispatcher, ;
 "Class= tools from pemeditor")

 lcText = ;
 loTools.oUtils.oIDEx.;
 GetCurrentHighlightedText()

 lProjWasOpen = .F.

 TRY
 MODIFY PROJECT (lcText) NOWAIT
 lSuccess = ;
 (TYPE("_VFP.ActiveProject") <> "U")
 CATCH
 lSuccess = .F.
 ENDTRY
ELSE
 lSuccess = .T.
 lProjWasOpen = .T.
ENDIF

IF NOT m.lSuccess
 MESSAGEBOX("No active project", 0+48, ;
 "Get form classes")
 RETURN
ENDIF

In testing, I found that this code works only
when the specified project is in the path. It turns out
that there’s a better way to do this (which wasn’t
available when I first looked at the problem).

Thor Procs
In addition to the Thor Framework, Thor also
 includes a set of programs called Thor Procs. These
live in the Tools\Procs folder of your Thor installa-
tion and have names that begin "Thor_Proc_." The
rest of the name describes the functionality.

To use a Thor Proc, call it using an EXECSCRIPT()
call, as in Listing 8.

Listing 8. Thor Procs are called using the EXECSCRIPT()
notation.
ExecScript(_Screen.cThorDispatcher, ;
 'Thor_Proc_SomeThorProc', ;
 'MyParameter')

The Thor Proc GetHighlightedText returns the
text at the current cursor position, and can handle
filenames including a path. This provides a better
solution to allow the Get Form Classes tool to work
by just clicking into the name of the project. The
Proc accepts a single parameter to indicate what to
return; Table 2 shows the acceptable values for the
parameter.

Table 2. Pass a string to Thor_Proc_GetHighlightedText to indi-
cate what text to return.

Parameter
value

Returns

Empty
(omitted)

The currently highlighted text.

“Name” The word the cursor is currently
positioned in.

“File Name” The filename the cursor is
currently positioned in, including
path.

“Object
Name”

The object name the cursor is
currently positioned in, including
any objects specified by WITH
statements.

Listing 9 shows the revised part of the code that
handles opening the file, if necessary.

Listing 9. Using the Thor Proc GetHighlightedText, we can
pick up the full name and path of the project in the Get Form
Classes tool.
IF TYPE("_VFP.ActiveProject") = "U"
 lcText = ;
 ExecScript(_Screen.cThorDispatcher, ;
 "Thor_Proc_GetHighlightedText", ;
 "File Name")

 lProjWasOpen = .F.

 TRY
 MODIFY PROJECT (lcText) NOWAIT
 lSuccess = ;
 (TYPE("_VFP.ActiveProject") <> "U")
 CATCH
 lSuccess = .F.
 ENDTRY
ELSE
 lSuccess = .T.
 lProjWasOpen = .T.
ENDIF

Page 6 FoxRockX March 2013

IF NOT m.lSuccess
 MESSAGEBOX("No active project", 0+48, ;
 "Get form classes")
 RETURN
ENDIF

Add Your Tools
While the Get Form Classes tools isn’t something I
can imagine using often enough to bother adding
it to Thor, the ability to make all those little bits of
code I’ve written over the years easily accessible is
very powerful. It increases the odds that I’ll reuse
these tools. If they’re easier to use, I’m more likely
to invest time improving them, as well. No doubt
you have some of these little tools floating around
too; Thor offers you a way to make them a lot more
useful.

In my next article, I’ll look at Thor’s structure
for providing options for tools, so they can work
differently in different situations or for different
users.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for businesses
and other organizations. Tamar is author or co-author
of nearly a dozen books including the award winning
Hacker’s Guide to Visual FoxPro, Microsoft Office
Automation with Visual FoxPro and Taming Visual
FoxPro’s SQL. Her latest collaboration is VFPX: Open
Source Treasure for the VFP Developer. Her books
are available from Hentzenwerke Publishing (www.
hentzenwerke.com). Tamar was a Microsoft Support
Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007,
Tamar received the Visual FoxPro Community Lifetime
Achievement Award. You can reach her at tamar@
thegranors.com or through www.tomorrowssolutionsllc.
com.

